Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Pathogens ; 12(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37624016

RESUMO

The abundant and widely distributed deermice Peromyscus leucopus and P. maniculatus are important reservoirs for several different zoonotic agents in North America. For the pathogens they persistently harbor, these species are also examples of the phenomenon of infection tolerance. In the present study a prior observation of absent expression of the high-affinity Fc immunoglobulin gamma receptor I (FcγRI), or CD64, in P. leucopus was confirmed in an experimental infection with Borreliella burgdorferi, a Lyme disease agent. We demonstrate that the null phenotype is attributable to a long-standing inactivation of the Fcgr1 gene in both species by a deletion of the promoter and coding sequence for the signal peptide for FcγRI. The Fcgr1 pseudogene was also documented in the related species P. polionotus. Six other Peromyscus species, including P. californicus, have coding sequences for a full-length FcγRI, including a consensus signal peptide. An inference from reported phenotypes for null Fcgr1 mutations engineered in Mus musculus is that one consequence of pseudogenization of Fcgr1 is comparatively less inflammation during infection than in animals, including humans, with undisrupted, fully active genes.

2.
PLoS Genet ; 19(5): e1010439, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146087

RESUMO

We use ATAC-seq to examine chromatin accessibility for four different tissues in Drosophila melanogaster: adult female brain, ovaries, and both wing and eye-antennal imaginal discs from males. Each tissue is assayed in eight different inbred strain genetic backgrounds, seven associated with a reference quality genome assembly. We develop a method for the quantile normalization of ATAC-seq fragments and test for differences in coverage among genotypes, tissues, and their interaction at 44099 peaks throughout the euchromatic genome. For the strains with reference quality genome assemblies, we correct ATAC-seq profiles for read mis-mapping due to nearby polymorphic structural variants (SVs). Comparing coverage among genotypes without accounting for SVs results in a highly elevated rate (55%) of identifying false positive differences in chromatin state between genotypes. After SV correction, we identify 1050, 30383, and 4508 regions whose peak heights are polymorphic among genotypes, among tissues, or exhibit genotype-by-tissue interactions, respectively. Finally, we identify 3988 candidate causative variants that explain at least 80% of the variance in chromatin state at nearby ATAC-seq peaks.


Assuntos
Cromatina , Drosophila melanogaster , Masculino , Animais , Feminino , Cromatina/genética , Drosophila melanogaster/genética , Sequenciamento de Cromatina por Imunoprecipitação , Genótipo , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala
3.
Mol Biol Evol ; 39(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36366952

RESUMO

We carried out a 200 generation Evolve and Resequence (E&R) experiment initiated from an outbred diploid recombined 18-way synthetic base population. Replicate populations were evolved at large effective population sizes (>105 individuals), exposed to several different chemical challenges over 12 weeks of evolution, and whole-genome resequenced. Weekly forced outcrossing resulted in an average between adjacent-gene per cell division recombination rate of ∼0.0008. Despite attempts to force weekly sex, roughly half of our populations evolved cheaters and appear to be evolving asexually. Focusing on seven chemical stressors and 55 total evolved populations that remained sexual we observed large fitness gains and highly repeatable patterns of genome-wide haplotype change within chemical challenges, with limited levels of repeatability across chemical treatments. Adaptation appears highly polygenic with almost the entire genome showing significant and consistent patterns of haplotype change with little evidence for long-range linkage disequilibrium in a subset of populations for which we sequenced haploid clones. That is, almost the entire genome is under selection or drafting with selected sites. At any given locus adaptation was almost always dominated by one of the 18 founder's alleles, with that allele varying spatially and between treatments, suggesting that selection acts primarily on rare variants private to a founder or haplotype blocks harboring multiple mutations.


Assuntos
Adaptação Biológica , Genética Populacional , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Haplótipos , Reprodução Assexuada , Genoma Fúngico , Herança Multifatorial
4.
G3 (Bethesda) ; 12(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36250804

RESUMO

Drosophila melanogaster has proved an effective system with which to understand the evolutionary genetics and molecular mechanisms of insecticide resistance. Insecticide use has left signatures of selection in the fly genome, and both functional and quantitative genetic studies in the system have identified genes and variants associated with resistance. Here, we use D. melanogaster and leverage a bulk phenotyping and pooled sequencing "extreme quantitative trait loci" approach to genetically dissect variation in resistance to malathion, an organophosphate insecticide. We resolve 2 quantitative trait loci, one of which implicates allelic variation at the cytochrome P450 gene Cyp6g1, a strong candidate based on previous work. The second shows no overlap with hits from a previous genome-wide association study for malathion resistance, recapitulating other studies showing that different strategies for complex trait dissection in flies can yield apparently different architectures. Notably, we see no genetic signal at the Ace gene. Ace encodes the target of organophosphate insecticide inhibition, and genome-wide association studies have identified strong Ace-linked associations with resistance in flies. The absence of quantitative trait locus implicating Ace here is most likely because our mapping population does not segregate for several of the known functional polymorphisms impacting resistance at Ace, perhaps because our population is derived from flies collected prior to the widespread use of organophosphate insecticides. Our fundamental approach can be an efficient, powerful strategy to dissect genetic variation in resistance traits. Nonetheless, studies seeking to interrogate contemporary insecticide resistance variation may benefit from deriving mapping populations from more recently collected strains.


Assuntos
Drosophila melanogaster , Inseticidas , Animais , Drosophila melanogaster/genética , Locos de Características Quantitativas , Malation/toxicidade , Estudo de Associação Genômica Ampla , Inseticidas/toxicidade , Resistência a Inseticidas/genética
5.
Genetics ; 221(1)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35143664

RESUMO

Deermice of the genus Peromyscus are well suited for addressing several questions of biologist interest, including the genetic bases of longevity, behavior, physiology, adaptation, and their ability to serve as disease vectors. Here, we explore a diversity outbred approach for dissecting complex traits in Peromyscus leucopus, a nontraditional genetic model system. We take advantage of a closed colony of deer-mice founded from 38 individuals and subsequently maintained for ∼40-60 generations. From 405 low-pass short-read sequenced deermice we accurate impute genotypes at 16 million single nucleotide polymorphisms. Conditional on observed genotypes simulations were conducted in which three different sized quantitative trait loci contribute to a complex trait under three different genetic models. Using a stringent significance threshold power was modest, largely a function of the percent variation attributable to the simulated quantitative trait loci, with the underlying genetic model having only a subtle impact. We additionally simulated 2,000 pseudo-individuals, whose genotypes were consistent with those observed in the genotyped cohort and carried out additional power simulations. In experiments employing more than 1,000 mice power is high to detect quantitative trait loci contributing greater than 2.5% to a complex trait, with a localization ability of ∼100 kb. We finally carried out a Genome-Wide Association Study on two demonstration traits, bleeding time and body weight, and uncovered one significant region. Our work suggests that complex traits can be dissected in founders-unknown P. leucopus colony mice and similar colonies in other systems using easily obtained genotypes from low-pass sequencing.


Assuntos
Cervos , Estudo de Associação Genômica Ampla , Animais , Cruzamento , Cervos/genética , Humanos , Herança Multifatorial , Peromyscus/genética , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
Genetics ; 220(3)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35100395

RESUMO

Despite the value of recombinant inbred lines for the dissection of complex traits, large panels can be difficult to maintain, distribute, and phenotype. An attractive alternative to recombinant inbred lines for many traits leverages selecting phenotypically extreme individuals from a segregating population, and subjecting pools of selected and control individuals to sequencing. Under a bulked or extreme segregant analysis paradigm, genomic regions contributing to trait variation are revealed as frequency differences between pools. Here, we describe such an extreme quantitative trait locus, or extreme quantitative trait loci, mapping strategy that builds on an existing multiparental population, the Drosophila Synthetic Population Resource, and involves phenotyping and genotyping a population derived by mixing hundreds of Drosophila Synthetic Population Resource recombinant inbred lines. Simulations demonstrate that challenging, yet experimentally tractable extreme quantitative trait loci designs (≥4 replicates, ≥5,000 individuals/replicate, and selecting the 5-10% most extreme animals) yield at least the same power as traditional recombinant inbred line-based quantitative trait loci mapping and can localize variants with sub-centimorgan resolution. We empirically demonstrate the effectiveness of the approach using a 4-fold replicated extreme quantitative trait loci experiment that identifies 7 quantitative trait loci for caffeine resistance. Two mapped extreme quantitative trait loci factors replicate loci previously identified in recombinant inbred lines, 6/7 are associated with excellent candidate genes, and RNAi knock-downs support the involvement of 4 genes in the genetic control of trait variation. For many traits of interest to drosophilists, a bulked phenotyping/genotyping extreme quantitative trait loci design has considerable advantages.


Assuntos
Drosophila melanogaster , Locos de Características Quantitativas , Animais , Mapeamento Cromossômico , Drosophila/genética , Drosophila melanogaster/genética , Fenótipo
7.
Toxicol In Vitro ; 79: 105269, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34757180

RESUMO

Read-across approaches often remain inconclusive as they do not provide sufficient evidence on a common mode of action across the category members. This read-across case study on thirteen, structurally similar, branched aliphatic carboxylic acids investigates the concept of using human-based new approach methods, such as in vitro and in silico models, to demonstrate biological similarity. Five out of the thirteen analogues have preclinical in vivo studies. Three out of them induced lipid accumulation or hypertrophy in preclinical studies with repeated exposure, which leads to the read-across hypothesis that the analogues can potentially induce hepatic steatosis. To confirm the selection of analogues, the expression patterns of the induced differentially expressed genes (DEGs) were analysed in a human liver model. With increasing dose, the expression pattern within the tested analogues got more similar, which serves as a first indication of a common mode of action and suggests differences in the potency of the analogues. Hepatic steatosis is a well-known adverse outcome, for which over 55 adverse outcome pathways have been identified. The resulting adverse outcome pathway (AOP) network, comprised a total 43 MIEs/KEs and enabled the design of an in vitro testing battery. From the AOP network, ten MIEs, early and late KEs were tested to systematically investigate a common mode of action among the grouped compounds. The targeted testing of AOP specific MIE/KEs shows that biological activity in the category decreases with side chain length. A similar trend was evident in measuring liver alterations in zebra fish embryos. However, activation of single MIEs or early KEs at in vivo relevant doses did not necessarily progress to the late KE "lipid accumulation". KEs not related to the read-across hypothesis, testing for example general mitochondrial stress responses in liver cells, showed no trend or biological similarity. Testing scope is a key issue in the design of in vitro test batteries. The Dempster-Shafer decision theory predicted those analogues with in vivo reference data correctly using one human liver model or the CALUX reporter assays. The case study shows that the read-across hypothesis is the key element to designing the testing strategy. In the case of a good mechanistic understanding, an AOP facilitates the selection of reliable human in vitro models to demonstrate a common mode of action. Testing DEGs, MIEs and early KEs served to show biological similarity, whereas the late KEs become important for confirmation, as progression from MIEs to AO is not always guaranteed.


Assuntos
Rotas de Resultados Adversos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/toxicidade , Animais , Simulação por Computador , Fígado Gorduroso/induzido quimicamente , Perfilação da Expressão Gênica , Humanos , Peixe-Zebra
8.
G3 (Bethesda) ; 11(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34534291

RESUMO

Little is known about the genetic architecture of antifungal immunity in natural populations. Using two population genetic approaches, quantitative trait locus (QTL) mapping and evolve and resequence (E&R), we explored D. melanogaster immune defense against infection with the fungus Beauveria bassiana. The immune defense was highly variable both in the recombinant inbred lines from the Drosophila Synthetic Population Resource used for our QTL mapping and in the synthetic outbred populations used in our E&R study. Survivorship of infection improved dramatically over just 10 generations in the E&R study, and continued to increase for an additional nine generations, revealing a trade-off with uninfected longevity. Populations selected for increased defense against B. bassiana evolved cross resistance to a second, distinct B. bassiana strain but not to bacterial pathogens. The QTL mapping study revealed that sexual dimorphism in defense depends on host genotype, and the E&R study indicated that sexual dimorphism also depends on the specific pathogen to which the host is exposed. Both the QTL mapping and E&R experiments generated lists of potentially causal candidate genes, although these lists were nonoverlapping.


Assuntos
Beauveria , Drosophila melanogaster , Animais , Mapeamento Cromossômico , Drosophila melanogaster/genética , Genética Populacional , Locos de Características Quantitativas
9.
BMC Bioinformatics ; 22(1): 9, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407090

RESUMO

BACKGROUND: Despite marked recent improvements in long-read sequencing technology, the assembly of diploid genomes remains a difficult task. A major obstacle is distinguishing between alternative contigs that represent highly heterozygous regions. If primary and secondary contigs are not properly identified, the primary assembly will overrepresent both the size and complexity of the genome, which complicates downstream analysis such as scaffolding. RESULTS: Here we illustrate a new method, which we call HapSolo, that identifies secondary contigs and defines a primary assembly based on multiple pairwise contig alignment metrics. HapSolo evaluates candidate primary assemblies using BUSCO scores and then distinguishes among candidate assemblies using a cost function. The cost function can be defined by the user but by default considers the number of missing, duplicated and single BUSCO genes within the assembly. HapSolo performs hill climbing to minimize cost over thousands of candidate assemblies. We illustrate the performance of HapSolo on genome data from three species: the Chardonnay grape (Vitis vinifera), with a genome of 490 Mb, a mosquito (Anopheles funestus; 200 Mb) and the Thorny Skate (Amblyraja radiata; 2650 Mb). CONCLUSIONS: HapSolo rapidly identified candidate assemblies that yield improvements in assembly metrics, including decreased genome size and improved N50 scores. Contig N50 scores improved by 35%, 9% and 9% for Chardonnay, mosquito and the thorny skate, respectively, relative to unreduced primary assemblies. The benefits of HapSolo were amplified by down-stream analyses, which we illustrated by scaffolding with Hi-C data. We found, for example, that prior to the application of HapSolo, only 52% of the Chardonnay genome was captured in the largest 19 scaffolds, corresponding to the number of chromosomes. After the application of HapSolo, this value increased to ~ 84%. The improvements for the mosquito's largest three scaffolds, representing the number of chromosomes, were from 61 to 86%, and the improvement was even more pronounced for thorny skate. We compared the scaffolding results to assemblies that were based on PurgeDups for identifying secondary contigs, with generally superior results for HapSolo.


Assuntos
Mapeamento Cromossômico/métodos , Diploide , Genoma/genética , Genômica/métodos , Animais , Anopheles/genética , Genes de Insetos/genética , Software
10.
Mol Ecol ; 29(24): 4898-4912, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33135198

RESUMO

"Evolve and resequence" (E&R) studies combine experimental evolution and whole-genome sequencing to interrogate the genetics underlying adaptation. Due to ease of handling, E&R work with asexual organisms such as bacteria can employ optimized experimental design, with large experiments and many generations of selection. By contrast, E&R experiments with sexually reproducing organisms are more difficult to implement, and design parameters vary dramatically among studies. Thus, efforts have been made to assess how these differences, such as number of independent replicates, or size of experimental populations, impact inference. We add to this work by investigating the role of time sampling-the number of discrete time points sequence data are collected from evolving populations. Using data from an E&R experiment with outcrossing Saccharomyces cerevisiae in which populations were sequenced 17 times over ~540 generations, we address the following questions: (a) Do more time points improve the ability to identify candidate regions underlying selection? And (b) does high-resolution sampling provide unique insight into evolutionary processes driving adaptation? We find that while time sampling does not improve the ability to identify candidate regions, high-resolution sampling does provide valuable opportunities to characterize evolutionary dynamics. Increased time sampling reveals three distinct trajectories for adaptive alleles: one consistent with classic population genetic theory (i.e., models assuming constant selection coefficients), and two where trajectories suggest more context-dependent responses (i.e., models involving dynamic selection coefficients). We conclude that while time sampling has limited impact on candidate region identification, sampling eight or more time points has clear benefits for studying complex evolutionary dynamics.


Assuntos
Saccharomyces cerevisiae , Seleção Genética , Adaptação Fisiológica , Alelos , Evolução Molecular , Saccharomyces cerevisiae/genética
11.
Genome Biol Evol ; 12(7): 1194-1206, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32539143

RESUMO

Vernal pools are unique in their isolation and the strong selection acting on their resident species. Vernal pool clam shrimp (Eulimnadia texana) are a promising model due to ease of culturing, short generation time, small genomes, and obligate desiccated diapaused eggs. Clam shrimp are also androdioecious (sexes include males and hermaphrodites), and here we use population-scaled recombination rates to support the hypothesis that the heterogametic sex is recombination free in these shrimp. We collected short-read sequence data from pooled samples from different vernal pools to gain insights into local adaptation. We identify genomic regions in which some populations have allele frequencies that differ significantly from the metapopulation. BayPass (Gautier M. 2015. Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics 201(4):1555-1579.) detected 19 such genomic regions showing an excess of population subdivision. These regions on average are 550 bp in size and had 2.5 genes within 5 kb of them. Genes located near these regions are involved in Malpighian tubule function and osmoregulation, an essential function in vernal pools. It is likely that salinity profiles vary between pools and over time, and variants at these genes are adapted to local salinity conditions.


Assuntos
Adaptação Biológica/genética , Crustáceos/genética , Genoma , Animais , Evolução Biológica , Ecossistema , Fluxo Gênico , Organismos Hermafroditas/genética , Masculino , New Mexico , Recombinação Genética , Seleção Genética , Processos de Determinação Sexual
12.
Genetics ; 215(2): 323-342, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32241804

RESUMO

Advanced-generation multiparent populations (MPPs) are a valuable tool for dissecting complex traits, having more power than genome-wide association studies to detect rare variants and higher resolution than F2 linkage mapping. To extend the advantages of MPPs in budding yeast, we describe the creation and characterization of two outbred MPPs derived from 18 genetically diverse founding strains. We carried out de novo assemblies of the genomes of the 18 founder strains, such that virtually all variation segregating between these strains is known, and represented those assemblies as Santa Cruz Genome Browser tracks. We discovered complex patterns of structural variation segregating among the founders, including a large deletion within the vacuolar ATPase VMA1, several different deletions within the osmosensor MSB2, a series of deletions and insertions at PRM7 and the adjacent BSC1, as well as copy number variation at the dehydrogenase ALD2 Resequenced haploid recombinant clones from the two MPPs have a median unrecombined block size of 66 kb, demonstrating that the population is highly recombined. We pool-sequenced the two MPPs to 3270× and 2226× coverage and demonstrated that we can accurately estimate local haplotype frequencies using pooled data. We further downsampled the pool-sequenced data to ∼20-40× and showed that local haplotype frequency estimates remained accurate, with median error rates 0.8 and 0.6% at 20× and 40×, respectively. Haplotypes frequencies are estimated much more accurately than SNP frequencies obtained directly from the same data. Deep sequencing of the two populations revealed that 10 or more founders are present at a detectable frequency for > 98% of the genome, validating the utility of this resource for the exploration of the role of standing variation in the architecture of complex traits.


Assuntos
Proteínas Fúngicas/genética , Genética Populacional , Genoma Fúngico , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Saccharomycetales/genética , Cruzamentos Genéticos , Diploide , Estudo de Associação Genômica Ampla , Fenótipo
13.
Sci Rep ; 9(1): 16595, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719551

RESUMO

Using two advanced sequencing approaches, Illumina and PacBio, we derive the entire Dscam gene from an M2 assembly of the complete Penaeus monodon genome. The P. monodon Dscam (PmDscam) gene is ~266 kbp, with a total of 44 exons, 5 of which are subject to alternative splicing. PmDscam has a conserved architectural structure consisting of an extracellular region with hypervariable Ig domains, a transmembrane domain, and a cytoplasmic tail. We show that, contrary to a previous report, there are in fact 26, 81 and 26 alternative exons in N-terminal Ig2, N-terminal Ig3 and the entirety of Ig7, respectively. We also identified two alternatively spliced exons in the cytoplasmic tail, with transmembrane domains in exon variants 32.1 and 32.2, and stop codons in exon variants 44.1 and 44.2. This means that alternative splicing is involved in the selection of the stop codon. There are also 7 non-constitutive cytoplasmic tail exons that can either be included or skipped. Alternative splicing and the non-constitutive exons together produce more than 21 million isoform combinations from one PmDscam locus in the P. monodon gene. A public-facing database that allows BLAST searches of all 175 exons in the PmDscam gene has been established at http://pmdscam.dbbs.ncku.edu.tw/ .


Assuntos
Processamento Alternativo , Proteínas de Artrópodes/genética , Éxons , Penaeidae/genética , Sequência de Aminoácidos , Animais , Hemócitos/metabolismo , Tecido Nervoso/metabolismo , Filogenia , Homologia de Sequência , Sequenciamento Completo do Genoma
14.
Sci Rep ; 9(1): 17618, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772306

RESUMO

The cricetine rodents Peromyscus leucopus and P. maniculatus are key reservoirs for several zoonotic diseases in North America. We determined the complete circular mitochondrial genome sequences of representatives of 3 different stock colonies of P. leucopus, one stock colony of P. maniculatus and two wild populations of P. leucopus. The genomes were syntenic with that of the murids Mus musculus and Rattus norvegicus. Phylogenetic analysis confirmed that these two Peromyscus species are sister taxa in a clade with P. polionotus and also uncovered a distinction between P. leucopus populations in the eastern and the central United States. In one P. leucopus lineage four extended regions of mitochondrial pseudogenes were identified in the nuclear genome. RNA-seq analysis revealed transcription of the entire genome and differences from controls in the expression profiles of mitochondrial genes in the blood, but not in liver or brain, of animals infected with the zoonotic pathogen Borrelia hermsii. PCR and sequencing of the D-loop of the mitochondrion identified 32 different haplotypes among 118 wild P. leucopus at a Connecticut field site. These findings help to further establish P. leucopus as a model organism for studies of emerging infectious diseases, ecology, and in other disciplines.


Assuntos
DNA Mitocondrial/genética , Reservatórios de Doenças , Genoma , Peromyscus/genética , Animais , Animais de Laboratório/genética , Animais Selvagens/genética , Vetores Aracnídeos/microbiologia , Borrelia , Infecções por Borrelia/genética , Infecções por Borrelia/microbiologia , Borrelia burgdorferi/isolamento & purificação , Feminino , Perfilação da Expressão Gênica , Haplótipos , Ixodes/microbiologia , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Doença de Lyme/veterinária , Muridae/classificação , Muridae/genética , Especificidade de Órgãos , Peromyscus/classificação , Peromyscus/microbiologia , Filogenia , Pseudogenes , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/microbiologia , Doenças dos Roedores/parasitologia , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Picadas de Carrapatos/microbiologia , Picadas de Carrapatos/veterinária , Estados Unidos
15.
Nat Commun ; 10(1): 4872, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653862

RESUMO

It has been hypothesized that individually-rare hidden structural variants (SVs) could account for a significant fraction of variation in complex traits. Here we identified more than 20,000 euchromatic SVs from 14 Drosophila melanogaster genome assemblies, of which ~40% are invisible to high specificity short-read genotyping approaches. SVs are common, with 31.5% of diploid individuals harboring a SV in genes larger than 5kb, and 24% harboring multiple SVs in genes larger than 10kb. SV minor allele frequencies are rarer than amino acid polymorphisms, suggesting that SVs are more deleterious. We show that a number of functionally important genes harbor previously hidden structural variants likely to affect complex phenotypes. Furthermore, SVs are overrepresented in candidate genes associated with quantitative trait loci mapped using the Drosophila Synthetic Population Resource. We conclude that SVs are ubiquitous, frequently constitute a heterogeneous allelic series, and can act as rare alleles of large effect.


Assuntos
Drosophila melanogaster/genética , Eucromatina/genética , Variação Estrutural do Genoma/genética , Locos de Características Quantitativas/genética , Animais , Feminino , Perfilação da Expressão Gênica , Frequência do Gene , Fenótipo
16.
Sci Adv ; 5(7): eaaw6441, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31355335

RESUMO

The rodent Peromyscus leucopus is the natural reservoir of several tick-borne infections, including Lyme disease. To expand the knowledge base for this key species in life cycles of several pathogens, we assembled and scaffolded the P. leucopus genome. The resulting assembly was 2.45 Gb in total length, with 24 chromosome-length scaffolds harboring 97% of predicted genes. RNA sequencing following infection of P. leucopus with Borreliella burgdorferi, a Lyme disease agent, shows that, unlike blood, the skin is actively responding to the infection after several weeks. P. leucopus has a high level of segregating nucleotide variation, suggesting that natural resistance alleles to Crispr gene targeting constructs are likely segregating in wild populations. The reference genome will allow for experiments aimed at elucidating the mechanisms by which this widely distributed rodent serves as natural reservoir for several infectious diseases of public health importance, potentially enabling intervention strategies.


Assuntos
Doença de Lyme/genética , Peromyscus/genética , Spirochaetales/genética , Doenças Transmitidas por Carrapatos/genética , Animais , Genoma/genética , Humanos , Anotação de Sequência Molecular , Peromyscus/microbiologia , Análise de Sequência de RNA , Doenças Transmitidas por Carrapatos/microbiologia , Sequenciamento Completo do Genoma
17.
Comput Struct Biotechnol J ; 17: 345-351, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30949305

RESUMO

Aldehyde Oxidase (AO) is an enzyme involved in the metabolism of aldehydes and N-containing heterocyclic compounds. Many drug compounds contain heterocyclic moieties, and AO metabolism has lead to failure of several late-stage drug candidates. Therefore, it is important to take AO-mediated metabolism into account early in the drug discovery process, and thus, to have fast and reliable models to predict the site of metabolism (SOM). We have collected a dataset of 78 substrates of human AO with a total of 89 SOMs and 347 non-SOMs and determined atomic descriptors for each compound. The descriptors comprise NMR shielding and ESP charges from density functional theory (DFT), NMR chemical shift from ChemBioDraw, and Gasteiger charges from RDKit. Additionally, atomic accessibility was considered using 2D-SASA and relative span descriptors from SMARTCyp. Finally, stability of the product, the metabolite, was determined with DFT and also used as a descriptor. All descriptors have AUC larger than 0.75. In particular, descriptors related to the chemical shielding and chemical shift (AUC = 0.96) and ESP charges (AUC = 0.96) proved to be good descriptors. We recommend two simple methods to identify the SOM for a given molecule: 1) use ChemBioDraw to calculate the chemical shift or 2) calculate ESP charges or chemical shift using DFT. The first approach is fast but somewhat difficult to automate, while the second is more time-consuming, but can easily be automated. The two methods predict correctly 93% and 91%, respectively, of the 89 experimentally observed SOMs.

18.
Mol Biol Evol ; 36(4): 691-708, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657986

RESUMO

Pre-existing and de novo genetic variants can both drive adaptation to environmental changes, but their relative contributions and interplay remain poorly understood. Here we investigated the evolutionary dynamics in drug-treated yeast populations with different levels of pre-existing variation by experimental evolution coupled with time-resolved sequencing and phenotyping. We found a doubling of pre-existing variation alone boosts the adaptation by 64.1% and 51.5% in hydroxyurea and rapamycin, respectively. The causative pre-existing and de novo variants were selected on shared targets: RNR4 in hydroxyurea and TOR1, TOR2 in rapamycin. Interestingly, the pre-existing and de novo TOR variants map to different functional domains and act via distinct mechanisms. The pre-existing TOR variants from two domesticated strains exhibited opposite rapamycin resistance effects, reflecting lineage-specific functional divergence. This study provides a dynamic view on how pre-existing and de novo variants interactively drive adaptation and deepens our understanding of clonally evolving populations.


Assuntos
Evolução Biológica , Farmacorresistência Fúngica/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Hidroxiureia , Mutação , Fosfatidilinositol 3-Quinases/genética , Locos de Características Quantitativas , Proteínas de Saccharomyces cerevisiae/genética , Seleção Genética , Sirolimo
19.
Genome Biol Evol ; 10(1): 143-156, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29294012

RESUMO

Vernal pool clam shrimp (Eulimnadia texana) are a promising model system due to their ease of lab culture, short generation time, modest sized genome, a somewhat rare stable androdioecious sex determination system, and a requirement to reproduce via desiccated diapaused eggs. We generated a highly contiguous genome assembly using 46× of PacBio long read data and 216× of Illumina short reads, and annotated using Illumina RNAseq obtained from adult males or hermaphrodites. Of the 120 Mb genome 85% is contained in the largest eight contigs, the smallest of which is 4.6 Mb. The assembly contains 98% of transcripts predicted via RNAseq. This assembly is qualitatively different from scaffolded Illumina assemblies: It is produced from long reads that contain sequence data along their entire length, and is thus gap free. The contiguity of the assembly allows us to order the HOX genes within the genome, identifying two loci that contain HOX gene orthologs, and which approximately maintain the order observed in other arthropods. We identified a partial duplication of the Antennapedia complex adjacent to the few genes homologous to the Bithorax locus. Because the sex chromosome of an androdioecious species is of special interest, we used existing allozyme and microsatellite markers to identify the E. texana sex chromosome, and find that it comprises nearly half of the genome of this species. Linkage patterns indicate that recombination is extremely rare and perhaps absent in hermaphrodites, and as a result the location of the sex determining locus will be difficult to refine using recombination mapping.


Assuntos
Proteínas de Artrópodes/genética , Crustáceos/genética , Genômica , Proteínas de Homeodomínio/genética , Animais , Feminino , Ordem dos Genes , Genes Homeobox , Ligação Genética , Genoma , Genômica/métodos , Masculino , Repetições de Microssatélites , Cromossomos Sexuais
20.
G3 (Bethesda) ; 7(6): 1643-1652, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592647

RESUMO

A major goal in the analysis of complex traits is to partition the observed genetic variation in a trait into components due to individual loci and perhaps variants within those loci. However, in both QTL mapping and genetic association studies, the estimated percent variation attributable to a QTL is upwardly biased conditional on it being discovered. This bias was first described in two-way QTL mapping experiments by William Beavis, and has been referred to extensively as "the Beavis effect." The Beavis effect is likely to occur in multiparent population (MPP) panels as well as collections of sequenced lines used for genome-wide association studies (GWAS). However, the strength of the Beavis effect is unknown-and often implicitly assumed to be negligible-when "hits" are obtained from an association panel consisting of hundreds of inbred lines tested across millions of SNPs, or in multiparent mapping populations where mapping involves fitting a complex statistical model with several d.f. at thousands of genetic intervals. To estimate the size of the effect in more complex panels, we performed simulations of both biallelic and multiallelic QTL in two major Drosophila melanogaster mapping panels, the GWAS-based Drosophila Genetic Reference Panel (DGRP), and the MPP the Drosophila Synthetic Population Resource (DSPR). Our results show that overestimation is determined most strongly by sample size and is only minimally impacted by the mapping design. When < 100, 200, 500, and 1000 lines are employed, the variance attributable to hits is inflated by factors of 6, 3, 1.5, and 1.1, respectively, for a QTL that truly contributes 5% to the variation in the trait. This overestimation indicates that QTL could be difficult to validate in follow-up replication experiments where additional individuals are examined. Further, QTL could be difficult to cross-validate between the two Drosophila resources. We provide guidelines for: (1) the sample sizes necessary to accurately estimate the percent variance to an identified QTL, (2) the conditions under which one is likely to replicate a mapped QTL in a second study using the same mapping population, and (3) the conditions under which a QTL mapped in one mapping panel is likely to replicate in the other (DGRP and DSPR).


Assuntos
Mapeamento Cromossômico , Drosophila melanogaster/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Algoritmos , Animais , Simulação por Computador , Bases de Dados Genéticas , Estudos de Associação Genética , Variação Genética , Genética Populacional , Modelos Genéticos , Fenótipo , Característica Quantitativa Herdável , Reprodutibilidade dos Testes , Navegador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...